Optical Processes In Semiconductors

Optical Processes in Semiconductors PDF
Author: Jacques I. Pankove
Publisher: Courier Corporation
ISBN: 9780486602752
Size: 46.87 MB
Format: PDF, ePub
Category : Science
Languages : en
Pages : 422
View: 4338

Get Book

Based on a series of lectures at Berkeley, 1968–1969, this is the first book to deal comprehensively with all of the phenomena involving light in semiconductors. The author has combined, for the graduate student and researcher, a great variety of source material, journal research, and many years of experimental research, adding new insights published for the first time in this book. Coverage includes energy states in semiconductors and their perturbation by external parameters, absorption, relationships between optical constants, spectroscopy, radiative transitions, nonradiative recombination, processes in pn junctions, semiconductor lasers, interactions involving coherent radiation, photoelectric emission, photovoltaic effects, polarization effects, photochemical effects, effect of traps on luminescence, and reflective modulation. The author has presented the subject in a manner which couples readily to physical intuition. He introduces new techniques and concepts, including nonradiative recombination, effects of doping on optical properties, Franz-Keldysh effect in absorption and emission, reflectance modulation, and many others. Dr. Pankove emphasizes the underlying principle that can be applied to the analysis and design of a wide variety of functional devices and systems. Many valuable references, illustrative problems, and tables are also provided here.

Theory Of Optical Processes In Semiconductors

Theory of Optical Processes in Semiconductors PDF
Author: P. K. Basu
Publisher: Clarendon Press
ISBN: 019158133X
Size: 47.27 MB
Format: PDF, ePub, Docs
Category : Science
Languages : en
Pages : 464
View: 7366

Get Book

Semiconductor optelectronic devices are at the heart of all information generation and processing systems and are likely to be essential components of future optical computers. With more emphasis on optoelectronics and photonics in graduate programmes in physics and engineering, there is a need for a text providing a basic understanding of the important physical phenomena involved. Such a training is necessary for the design, optimization and search for new materials, devices, and application areas. This book provides a simple quantum mechanical theory of important optical processes, i.e., band-to- band, intersubband and excitonic absorption and recombination in bulk, quantum wells, wires, dots, superlattices and strained layers including electro-optic effects. The classical theory of absorption, quantization of radiation, and band picture based on k.p perturbation has been included to provide the necessary background. Prerequisites for the book are a knowledge of quantum mechanics and solid state theory. Problems have been set at the end of each chapter, some of which may guide the reader to study processes not covered in the book. The application areas of the phenomena are also indicated. This book is intended for use by graduate students in physics and engineering, beginners in the field and engineers. The use of simple one-electron theory throughout may also make parts of it useful for second- and third-year undergraduates.

Handbook Of Nitride Semiconductors And Devices Electronic And Optical Processes In Nitrides

Handbook of Nitride Semiconductors and Devices  Electronic and Optical Processes in Nitrides PDF
Author: Hadis Morkoç
Publisher: John Wiley & Sons
ISBN: 3527628428
Size: 19.24 MB
Format: PDF
Category : Technology & Engineering
Languages : en
Pages : 883
View: 2667

Get Book

The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 2 addresses the electrical and optical properties of nitride materials. It includes semiconductor metal contacts, impurity and carrier concentrations, and carrier transport in semiconductors.

Coherent Optical Interactions In Semiconductors

Coherent Optical Interactions in Semiconductors PDF
Author: R.T. Phillips
Publisher: Springer Science & Business Media
ISBN: 1475797486
Size: 73.86 MB
Format: PDF
Category : Science
Languages : en
Pages : 372
View: 2996

Get Book

The NATO Advanced Research Workshop on Coherent Optical Processes in Semiconductors was held in Cambridge, England on August 11-14,1993. The idea of holding this Workshop grew from the recent upsurge in activity on coherent transient effects in semiconductors. The development of this field reflects advances in both light sources and the quality of semiconductor structures, such that tunable optical pulses are now routinely available whose duration is shorter than the dephasing time for excitonic states in quantum wells. It was therefore no surprise to the organisers that as the programme developed, there emerged a heavy emphasis on time-resolved four-wave mixing, particularly in quantum wells. Nevertheless, other issues concerned with coherent effects ensured that several papers on related problems contributed some variety. The topics discussed at the workshop centred on what is a rather new field of study, and benefited enormously by having participants representing many of the principal groups working in this area. Several themes emerged through the invited contributions at the Workshop. One important development has been the careful examination of the two-level model of excitonic effects; a model which has been remarkably successful despite the expected complexities arising from the semiconductor band structure. Indeed, modest extensions to the two level model have been able to offer a useful account for some of the complicated polarisation dependence of four-wave mixing signals from GaAs quantum wells. This work clearly is leading to an improved understanding of excitons in confined systems.

Optical Processes In Microcavities

Optical Processes in Microcavities PDF
Author: Richard Kounai Chang
Publisher: World Scientific
ISBN: 9789810223441
Size: 13.84 MB
Format: PDF, Kindle
Category : Science
Languages : en
Pages : 434
View: 6257

Get Book

The dielectric microstructures act as ultrahigh Q factors optical cavities, which modify the spontaneous emission rates and alter the spatial distributions of the input and output radiation. The editors have selected leading scientists who have made seminal contributions in different aspects of optical processes in microcavities. Every attempt has been made to unify the underlying physics pertaining to microcavities of various shapes. This book begins with a chapter on the role of microcavity modes with additional chapters on how these microcavity modes affect the spontaneous and stimulated emission rates, enhance nonlinear optical processes, used in cavity-QED and chemical physics experiments, aid in single-molecule detection, influence the design of microdisk semiconductor lasers, and how deformed cavities can be treated with classical chaos theory.

Nonlinear Optics In Semiconductors I

Nonlinear Optics in Semiconductors I PDF
Author:
Publisher: Academic Press
ISBN: 9780080864563
Size: 35.80 MB
Format: PDF, Kindle
Category : Science
Languages : en
Pages : 426
View: 7636

Get Book

Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.

Electronic Processes In Organic Semiconductors

Electronic Processes in Organic Semiconductors PDF
Author: Anna Köhler
Publisher: John Wiley & Sons
ISBN: 3527332928
Size: 26.16 MB
Format: PDF, ePub, Docs
Category : Science
Languages : en
Pages : 424
View: 4984

Get Book

The first advanced textbook to provide a useful introduction in a brief, coherent and comprehensive way, with a focus on the fundamentals. After having read this book, students will be prepared to understand any of the many multi-authored books available in this field that discuss a particular aspect in more detail, and should also benefit from any of the textbooks in photochemistry or spectroscopy that concentrate on a particular mechanism. Based on a successful and well-proven lecture course given by one of the authors for many years, the book is clearly structured into four sections: electronic structure of organic semiconductors, charged and excited states in organic semiconductors, electronic and optical properties of organic semiconductors, and fundamentals of organic semiconductor devices.

Physics Of Photonic Devices

Physics of Photonic Devices PDF
Author: Shun Lien Chuang
Publisher: John Wiley & Sons
ISBN: 0470293195
Size: 75.26 MB
Format: PDF, ePub, Docs
Category : Technology & Engineering
Languages : en
Pages : 840
View: 6449

Get Book

The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as: surface plasmonics and micro-ring resonators; the theory of optical gain and absorption in quantum dots and quantum wires and their applications in semiconductor lasers; and novel microcavity and photonic crystal lasers, quantum-cascade lasers, and GaN blue-green lasers within the context of advanced semiconductor lasers. Physics of Photonic Devices, Second Edition presents novel information that is not yet available in book form elsewhere. Many problem sets have been updated, the answers to which are available in an all-new Solutions Manual for instructors. Comprehensive, timely, and practical, Physics of Photonic Devices is an invaluable textbook for advanced undergraduate and graduate courses in photonics and an indispensable tool for researchers working in this rapidly growing field.

Ultrafast Dynamical Processes In Semiconductors

Ultrafast Dynamical Processes in Semiconductors PDF
Author: Kong-Thon Tsen
Publisher: Springer Science & Business Media
ISBN: 9783540402398
Size: 40.98 MB
Format: PDF
Category : Technology & Engineering
Languages : en
Pages : 400
View: 713

Get Book

An international team of experts describes the optical and electronic properties of semiconductors and semiconductor nanostructures at picosecond and femtosecond time scales. The contributions cover the latest research on a wide range of topics. In particular they include novel experimental techniques for studying and characterizing nanostructure materials. The contributions are written in a tutorial way so that not only researchers in the field but also researchers and graduate students outside the field can benefit.